

The Urban Heat Harvester

The Mission of Urban-Climate&Energy

Climate Change

- reducing global warming and extreme weather events

City Livability

- reducing urban heat island phenomenon, urban-climate extremes and associated health risks

Energy Generation

- creating clean and renewable zero-emission energy

Energy Efficiency

- reducing energy required for air-conditioning cooling in cities

Energy Equivalence

- recycling waste heat to warm water

Global Heat-Wave July 2006

What is the Heat Harvester Technology?

An innovative strategy to cool cities by harvesting waste heat by withdrawing thermal pollution from the urban atmosphere via city buildings utilizing their air-conditioning systems

Thus moderating urban climate extremes and heat-stress experiences, increasingly livability and reducing energy use for cooling

While simultaneously recycling and transforming the heat into zero-emission renewable energy and energy equivalent (to heat water) by means of a Heat Harvesting (HH) device.

The Impact of Heat on Global Warming

Both greenhouse gas emissions and heat-emissions are forms of pollution, and work in unison to bring about climate change - at global and urban scales. The heat absorbed by the greenhouse gases causes the climatic disruptions, and any reductions in thermal pollution should reduce the impact of the gases trapped in the atmosphere.

Thus, it is not sufficient (although essential) to reduce greenhouse gas emissions. Even the current levels of gases in the air, not taking into account any future additions will ensure many more decades of rising temperatures unless the thermal pollution itself is also rapidly reduced.

The Urban Heat Island Phenomenon

The urban heat island phenomenon traps heat in thermally massive cities which absorb, store and re-emit radiant and anthropogenic heat with far-reaching environmental sustainability and human livability implications. Temperatures of urban air domes can range up to 10-16C (50-60F) warmer than the surrounding countryside.

- Urban climate impact: intensification of extreme urban climatic events (floods, violent winds etc)
- Health consequences: increased heat-wave mortality, air-pollution intensification
- Public safety consequences: public-realm avoidance-behavior, leading to increased crime opportunity
- Energy consumption consequences: increased consumption of energy for air-conditioning of buildings, unsustainable peak electricity demand, brown-outs
- Global warming impact: urban thermal emissions are trapped by greenhouse gas emissions (CO_{2-e}) thus contributing to climate-change

The infra-red thermal images below illustrate the Urban Heat Island phenomenon.

The Urban Heat Island traps heat in thermal mass and thermally massive 'canyon' cities that absorb, store and re-emit radiant and anthropogenic heat.

	Heat Index Chart																
	% Relative Humidity																
		15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
т	110	108	112	117	123	130											
e m	105	102	105	108	113	117	122	130					•			Ì	•
p e	100	97	98	102	104	107	110	115	120	126	132					Ì	
r a	95	91	93	95	96	98	100	104	106	109	113	119	124	130		ĺ	
t	90	86	87	88	90	91	92	95	97	98	100	103	106	110	114	117	121
r	85	81	82	83	84	85	86	87	88	89	90	92	94	96	97	100	102
е	80	76	77	78	78	79	79	80	81	82	83	84	85	86	87	88	89
Legend																	
	80-89 degrees Fatigue is possible with prolonged exposure and/or physical activity.																
90-104 degrees						Sunstroke, heat cramps and heat exhaustion are possible with prolonged exposure and/or physical activity.											
	105-	129 d	legre	es	Sun with	Sunstroke, heat cramps and heat exhaustion are likely. Heat stroke is possible with prolonged exposure and/or physical activity.											
	130+ degrees Heatstroke/sunstroke is highly likely with continued exposure.																

- 2. 3.
- 4. 5.

Image References: 2. UHI @ micro-urban scale, *Source:* Authors 3. UHI @ macro-scale (Tokyo), *Source:* Urban Climatology and Urban Thermal Climates http://publish.uwo.ca/~javoogt/urban%20climate%20.htm, *Photo:* courtesy M. Roth, National University of Singapore 4. Heat Index Chart, *Source:* http://publish.uwo.ca/~javoogt/urban%20climate%20.htm, *Photo:* courtesy M. Roth, National University of Singapore 4. Heat Index Chart, *Source:* http://www.tvweather.com/awpage/heat_index_chart.htm, Searce: http://www.tvweather.com/awpage/heat_index_chart.htm, Searce: http://www.tvweather.com/awpage/heat_index_chart.htm, Searce: http://www.tvweather.com/awpage/heat_index_chart.htm, Searce: http://www.tvweather.com/awpage/heat_index_chart.htm, Not 1:13-25, 2005

How can heat pollution be captured and removed?

1. Capture the heat pollution	2. Convert or transform the heat pollution
Draw waste heat from the Urban Heat Island via building air-conditioning systems and capture at rooftop outlets of:	The Heat Harvester technology converts and transforms waste heat into electrical energy , and captures the remaining heat to warm water .
offices	
high-rise residential buildings	
hospitals	
shopping malls	
cinemas	
libraries	
sport arenas	
train and bus stations	
airports etc	

Heat extracted from inside buildings is not removed but simply concentrated and displaced: from the inside to the outside. On a summer's day in NYC when the air temperature is 32C/90F, the waste heat at street-level air-conditioner exhausts of CBD buildings is $\pm 58C/136F$ – substantially hotter than the ambient temperature. Each air-conditioner thus pumps superheated air out into the city.

6.

7.

Image References: 6. Rooftop Waste Heat Temperatures, *Source*: Authors 7. Rooftop Air Conditioning Exhausts, NYC, *Source*: <u>http://earth.google.com/</u>

8.

9.

Image References: 8. Sketch of Heat Transfer from Indoors to Outdoors via Air Conditioner, *Source:* Authors 9. Thermal Image of Air Conditioner Waste Heat Emissions on mild Autumn day, *Source:* Authors

Income Stream Potential

- Lease of HH units to Energy Utilities
- Percentage returns from Energy Utilities on sales of renewable electricity produced
- Tax credits or government grants
- Mayors offering capital incentives and tax credits to Energy Utilities or individuals mitigating heat emissions and producing clean energy via HH technology
- Sales to air-conditioning manufacturers, green-building designers and developers

rinted on recycled paper

Dr Robert Samuels PhD (Reading) MSc (Surrey) M Urban & Reg. Planning (UCT) BA (Wits)

CEO

cell+61 422 683 411 robert.samuels@u-c-e.com Dr Kirsti Samuels DPhil BCL (Oxon) LLB BSc (Syd)

Director

cell+1 917 496 3025 kirsti.samuels@u-c-e.com

www.urban-climate-energy.com

 \bigcirc